Integration of Mechanical System Redesign Geothermal Heat Pump Redesign

The New Learning Center Lutheran Theological Seminary at Philadelphia

Wesley S. Lawson
Architectural Engineering
Mechanical Option
Pennsylvania State University

Building Statistics

•<u>Building Size</u> 58,000 square feet

- Approximate Project Cost \$14,880,000
- Delivery MethodDesign-Bid-Build
- Construction DatesMarch 2004 to February 2006

Top picture by GYA Architects, Inc. Bottom picture by Wes Lawson

Building Statistics

Owner

Lutheran Theological Seminary at Philadelphia

Architect

GYA Architects, Inc.

•MEP Engineer

Paul H. Yeomans, Inc.

Structural Engineer

O'Donnell & Naccarato, Inc.

Pictures by Wes Lawson

Building Statistics

- Stone façade from original building
- •Basement Storage
- •1st Floor Reception Hall, Lounges, and Kitchen
- •2nd, 3rd Floor Classrooms and Offices

Top picture by GYA Architects, Inc. Bottom picture by Wes Lawson

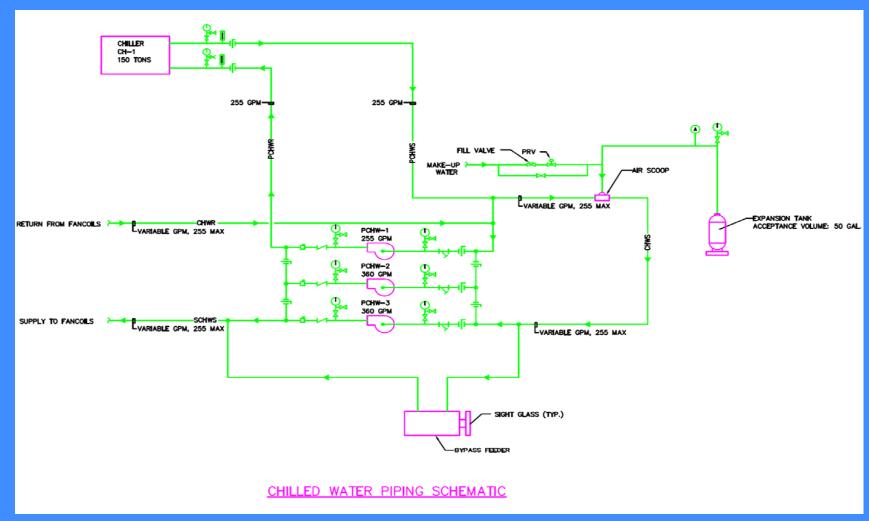
Presentation Outline

- Design Goals and Considerations
- Existing Systems
- Building Loads
- Mechanical Redesign
- Electrical Redesign
- CM Studies
- Conclusions
- Recommendations

Design Goals and Considerations

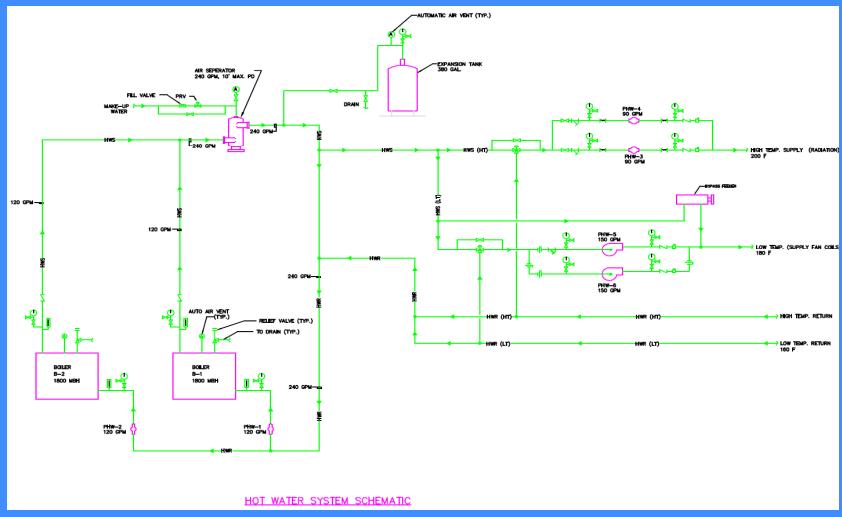
- Feasible System
- Individual Occupant Comfort and Control
- Energy Efficient
- Low Cost
 - –Operation Cost
 - -Initial Cost
 - -20 Year Life Cycle Cost
- Low Site Emissions

Existing Mechanical System


DOAS with Fan Coil Terminal Units

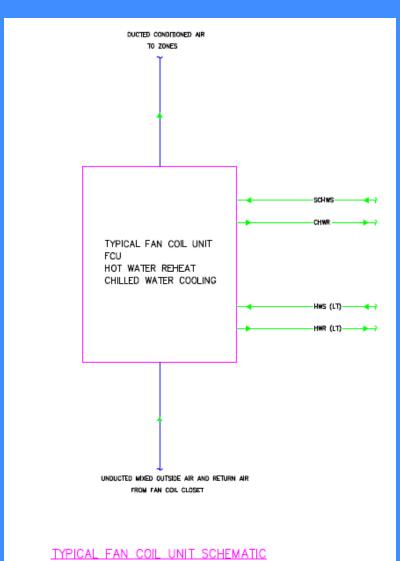
- -(3) Rooftop Units with Enthalpy Wheels
 - DX cooling with gas heat
- -Basement Supply Air Plenum
- -Air Cooled Chiller (150 tons)
- -(2) Gas Heat Boilers (1800 MBH each)
- -(66) Fan Coil Units

Chilled Water Schematic



Wesley S. Lawson – LTSP The New Learning Center

Hot Water Schematic



Wesley S. Lawson – LTSP The New Learning Center

Fan Coil Schematic

Cooling Building Loads

Original Design

- -150 tons for Fan Coil Units
- –62 tons of DX in Rooftop Units

New Calculations

- -166 tons for building peak load
- All equipment on the same load source

Heating Building Loads

Original Design

- -150 tons for Fan Coil Units
- -n+1 Boiler design
- –52.5 tons of gas heat in Rooftop Units

New Calculations

- -125 tons for building peak load
- All equipment on the same load source

Design Goals and Considerations

- Feasible System
- Individual Occupant Comfort and Control
- Energy Efficient
- Low Cost
 - –Operation Cost
 - -Initial Cost
 - -20 Year Life Cycle Cost
- Low Site Emissions

Mechanical System Redesign Choice

Why?

- •Can be 100% OA system
- Terminal Heat Pumps can maintain individual control
- Energy Efficient
- Low Operation Cost
- Zero on site emissions

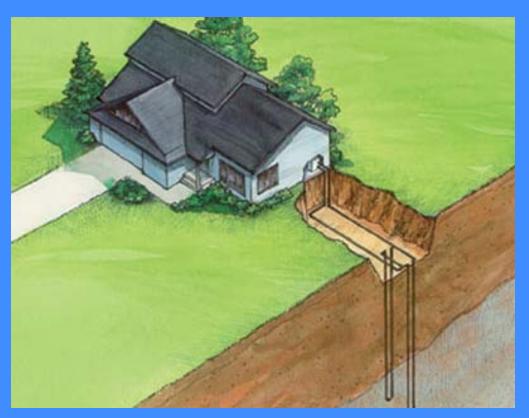


Image by WaterFurnace

Electrical Questions ???

- •Will the system size increase?
- •Will additional power panels need to be added?
- •Will the emergency power need to be increased?
- •Will the units need to be circuited differently?

CM Questions ???

- •Will construction <u>cost</u> increase for the mechanical and electrical systems?
- •Will construction <u>time</u> increase for the mechanical and electrical systems?
- •Where will additional construction efforts take place?
- •Will the redesign affect the on time delivery?

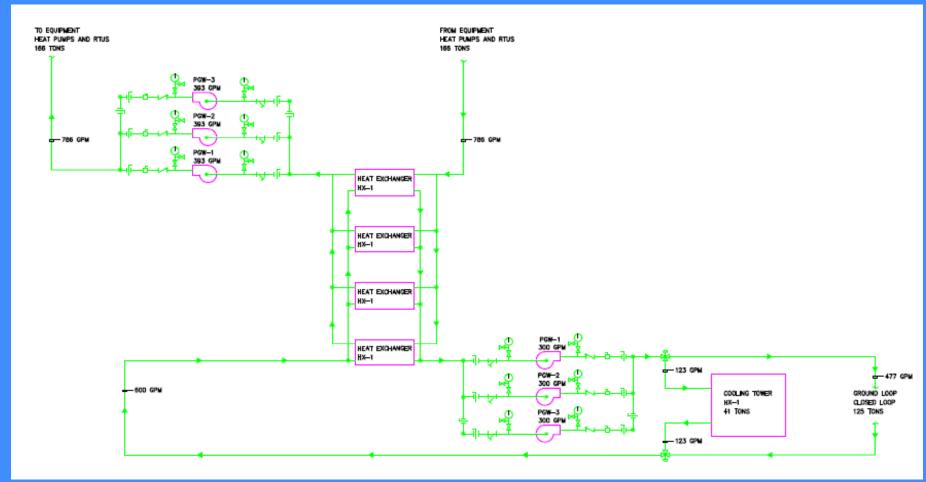
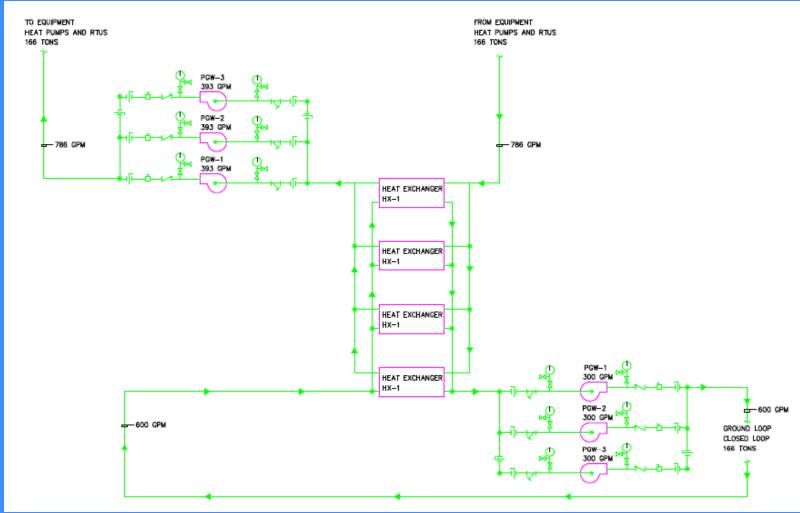
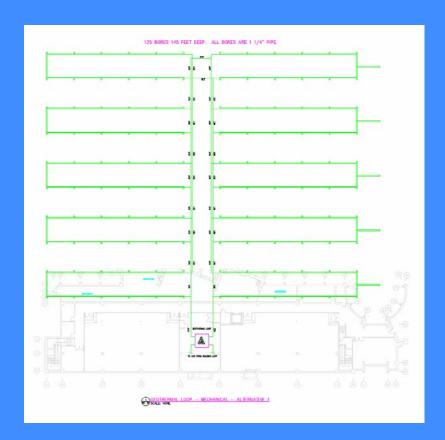
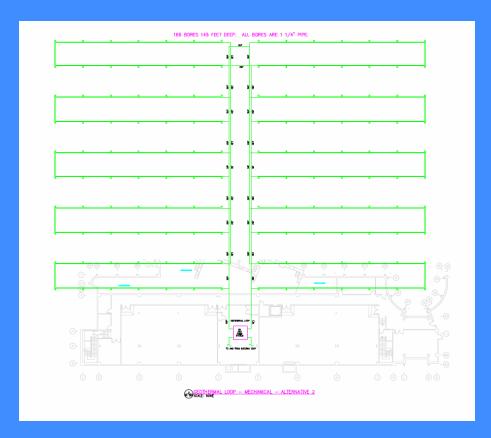

- Geothermal Loop sized for heating load
 - -125 tons
- Cooling Tower sized for excess cooling load
 - **-41** tons
- •RTU-4 added

Image by Trane, Inc.



- Geothermal Loop sized for Highest Capacity
 - -166 tons
- Cooling is not supplemented by a Cooling Tower
 - -Extra capacity in loop for heating conditions
- •RTU-4 added


Wesley S. Lawson – LTSP The New Learning Center


Geothermal Alternative Bore Comparison

Alternative 1

Alternative 2

Wesley S. Lawson – LTSP The New Learning Center

Operation Energy Consumption

	Original Fan Coil Design		Alterna	tive 1	Alternative 2	
	Total Energy	% of Total	Total Energy	% of Total	Total Energy	% of Total
Source	kWh/yr	Energy	kWh/yr	Energy	kWh/yr	Energy
Boiler and accessories	312,554	45.9%	-	0.0%	-	0.0%
Heat Pump Heating	-	0.0%	165,505	29.8%	166,403	29.1%
Chiller and accessories	38,814	5.7%	-	0.0%	-	0.0%
Heat Pump Cooling	-	0.0%	57,205	10.3%	57,183	10.0%
Cooling Tower	-	0.0%	1,666	0.3%	-	0.0%
Fans	210,412	30.9%	108,855	19.6%	109,792	19.2%
Pumps	12,257	1.8%	76,088	13.7%	92,065	16.1%
Lighting	146,623	21.5%	146,623	26.3%	146,623	25.7%
Total Energy						
Consumption	680,945	100.0%	555,385	100.0%	571,832	100.0%
Total Cost per Year	\$88,523		\$72,200		\$74,338	

Emissions

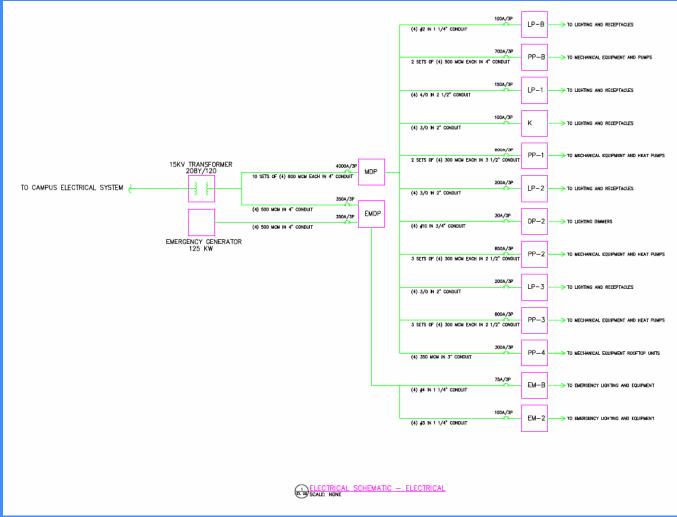
	Fan Coil Design	Alternative 1	Alternative 2
	Emissions	Emissions	Emissions
Pollutant	lbm / year	lbm / year	lbm / year
CO ₂	1,001,358	766,431	789,128
SO _x	4,315	4,188	4,312
NO _x	2,942	2,466	2,539
Particulates	367	0	0

Initial Cost of Mechanical Equipment

- Cost of Differing Mechanical Equipment
- Highest Cost Equipment
 - -Fan Coil Design: Chiller, 2 Boilers
 - -Alternative 1: Heat Exchanger, Heat Pumps, RTU-4
 - -Alternative 2: Heat Exchanger, Heat Pumps, RTU-4

	Fan Coil Design	Alternative 1	Alternative 2
Cost	\$389,175	\$376,175	\$368,425

Electrical Redesign


Answering Questions

- System increased from 690 to 823 kVA (20%)
- Increased from 4 to 5 power panels
- No increase in emergency power system
- One circuit per Heat Pump instead of multiple Fan Coils on a single circuit

Electrical Redesign

Electrical Power Cost

	Fan Coil Design	Alternative 1	Alternative 2
Cost	\$134,089	\$260,962	\$260,962
Cost / SF	\$2.31	\$4.50	\$4.50

Construction Time

- Time of Differing Mechanical and Electrical Construction
- Highest Labor Time
 - -Fan Coil Design: Chiller, Boilers, Building Piping
 - -Alternative 1: Heat Pumps, Geothermal Ground Piping
 - -Alternative 2: Heat Pumps, Geothermal Ground Piping

Hours	Fan Coil Design	Alternative 1	Alternative 2
Mechanical	1468	1530	1557
Electrical	297	1086	1086
Total	1765	2616	2643

Construction Cost

- Cost of Differing Mechanical and Electrical Construction
- Highest Construction Equipment Cost
 - -Fan Coil Design: 500 MCM feeder wires
 - -Alternative 1: 600 MCM feeder wires, transformer
 - -Alternative 2: 600 MCM feeder wires, transformer

Cost	Fan Coil Design	Alternative 1	Alternative 2
Mechanical	\$186,819	\$368,622	\$448,441
Electrical	\$33,679	\$85,517	\$85,517
Total	\$220,498	\$454,139	\$533,958

Total Life Cycle Cost

Cost	Fan Coil Design	Alternative 1	Alternative 2
Total Initial Cost	\$710,083	\$1,005,759	\$1,077,828
Yearly Operation Cost	\$88,523	\$72,200	\$74,338
20 Year Life Cycle	\$2,480,543	\$2,449,759	\$2,564,588
Savings		\$30,784	-\$84,045

Total Life Cycle Cost

- Energy Policy Act of 2005
 - -16 2/3% energy reduction qualifies for tax deductions
 - -\$0.60 per square foot
- Saves an extra \$6,960 per year
- •20 Year life cycle
 - -Alternative 1: \$170,000 saved
 - -Alternative 2: \$55,150 saved

- Alternative 1 is the clear selection because:
 - -Lower Initial Cost
 - –Lower Operation Cost
 - -Lower Life Cycle Cost
 - -Lower Construction Time
 - -Lower Emissions
 - -Equivalent Individual Occupant Control
 - –Will have less affect on the Earth temperature due to cooling tower

Alternative 1 vs. Existing System

- Alternative 1 advantages:
 - -Lower Operation Cost
 - -Air Handling Unit for Basement
 - -Lower 20 Year Life Cycle Cost by \$170,000
 - -Lower Emissions
- •Fan Coil System Advantages:
 - -Lower Initial Cost by \$300,000
 - -Lower Construction Time

Personal Recommendation

- Alternative 1Geothermal Heat PumpSystem
 - -System Operation
 - –Life Cycle Cost
 - –Operation Cost

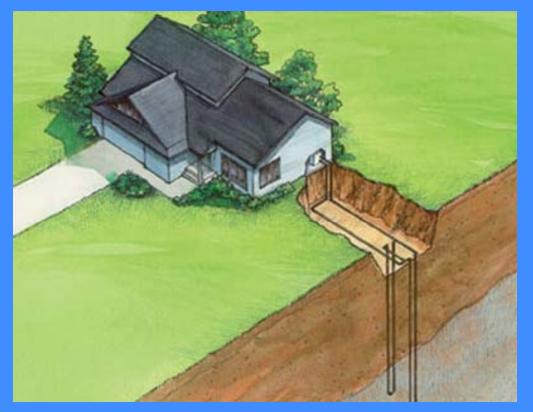


Image by WaterFurnace

Questions?

Pictures by Wes Lawson

Top picture by GYA Architects, Inc. Bottom picture by Wes Lawson

Wesley S. Lawson – LTSP The New Learning Center